Michael addition of thiols, carbon nucleophiles and amines to dehydroamino acid and dehydropeptide derivatives †

Paula M. T. Ferreira, Hernâni L. S. Maia,* Luís S. Monteiro and Joana Sacramento

Department of Chemistry, University of Minho, Gualtar, P-4700-320 Braga, Portugal

Received (in Cambridge, UK) 24th July 2001, Accepted 22nd October 2001 First published as an Advance Article on the web 19th November 2001

Michael additions of nitrogen heterocycles, thiols, carbon nucleophiles and amines to dehydroalanine derivatives, including a glycyldehydroalanine peptide, are performed in fair to good yields. Didehydroaminobutyric acid derivatives react only with the stronger nucleophiles but in considerably lower yields and often no reaction is observed with the corresponding didehydrophenylalanine derivatives. When a tosyl group is bonded to the nitrogen atom of the dehydroamino acid, in some cases the addition product undergoes elimination of this group and yields the corresponding β -substituted derivative of the α , β -didehydroamino acid. Addition of some β -dicarbonyl compounds leads to formation of products to which the structure of α , α -disubstituted cyclic amino acid derivatives is assigned.

Introduction

Although being one of the most important and widely used synthetic tools for the construction of quaternary carbon atoms, there are few reports on the use of the Michael addition of nucleophiles to α,β -didehydroamino acids.¹⁻⁶ Difficulties met with reactions in solution were overcome by carrying them out in the solid phase.⁵ In a recent publication⁶ good yields were reported for the addition of heterocyclic nucleophiles to methyl 2-acetamidoacrylate in solution, by carrying out the reactions at 60 °C to yield the corresponding N-acetyl- β -substituted alanine salts. The limited use of α,β -didehydroamino acids in Michael additions can be assigned mainly to the fact that these compounds are poor Michael acceptors. Nevertheless, we were able to circumvent this difficulty⁷ by double acylation of the acceptor at its amine group, which greatly enhances the reactivity of these compounds, thus avoiding the need for unwanted heating. Using several nitrogen heterocycles and thiols in combination with various N,N-diacyldehydroalanine derivatives we were able to synthesise several B-substituted alanines in high yields.^{7,8} Unexpectedly, by substituting tosyl for one of the acyl groups we were able to prepare several β-substituted dehydroamino acid derivatives in high yield, which resulted from spontaneous elimination of toluenesulfinic acid.9 In view of these results, we decided to extend our investigation to additional nucleophiles and other dehydroamino acids in order to investigate the scope and limitations of this reaction, having also in mind to further investigate the unexpected behaviour of tosyl derivatives.

Results and discussion

We have previously reported⁸ the addition of thiophenol (a) and methyl mercaptoacetate (b) to N,N-bis-(*tert*-butoxycarbonyl)didehydroalanine methyl ester¹⁰ [Boc- Δ Ala(N-Boc)-OMe, 1]. With substrates having Boc replaced by another acyl group such as benzyloxycarbonyl (Z, 2a and 2b), *p*-nitrobenzyloxycarbonyl [Z(NO₂), 3a and 3b], benzoyl (Bz, 4a and 4b) and *p*-nitrobenzoyl [Bz(NO₂), 5a and 5b] addition occurred in high yields and no cleavage of the acyl groups was observed (Scheme 1, Table 1). This differed from what had been observed when compounds having one of these groups combined with Boc were allowed to react with nitrogen nucleophiles such as pyrazole (m).^{8,11} The two acyl groups being preserved in the final products allow selective cleavage of one of them for further synthetic use. Furthermore, thiophenol (a) and methyl mercaptoacetate (b) could also be added to a dipeptide derivative [Tos-Gly(N-Boc)- Δ Ala(N-Boc)-OMe,⁸ 7] to give the addition products in yields of 87 and 90%, respectively. As shown before with nitrogen heterocycles,⁹ in the case of reaction of the above thiols with the substrate having one of the Boc groups replaced by tosyl, addition also occurred. Subsequently, the product underwent spontaneous elimination of toluenesulfinic acid to give the corresponding β-substituted dehydroamino acid derivative in high yield. Thus, with thiophenol (a), an overnight reaction gave the expected addition product (6a) in a yield of 83%, but when the reaction mixture was kept for 10 days an identical yield of the detosylated product (8a) was obtained. This was a 4:1 mixture of the E and Z isomers of the corresponding dehydroamino acid derivative, both being obtained pure by chromatography through silica gel. With methyl mercaptoacetate (b), detosylation was faster than in the case of the other nucleophiles, which was shown by the formation of a mixture of the addition product with the detosylated one as soon as the reagents were mixed. Thus, only the latter (8b) could be isolated (86%), as its E isomer, the reaction taking 72 hours to completion. An identical behaviour was observed with octane-1-thiol (c), which gave the E isomer of the corresponding β -substituted dehydroamino acid (8c) in a yield of 78%. We have previously reported⁹ the reaction of $Tos-\Delta Ala(N-Boc)$ -OMe 6 with nitrogen heterocycles to give the corresponding β-substituted dehydroamino acids as above. However, by using chloroform instead of acetonitrile as the reaction solvent we were able to decrease the rate of detosylation, thus making it possible to isolate the corresponding saturated N-Tos-N-Boc-amino acid derivatives 6k, 6l, 6m and 6n. As shown in Table 1, in the case of the two latter compounds the reactions were nearly quantitative. Unfortunately, some thiols showed too much reactivity to allow isolation of the saturated intermediates even when chloroform was used as solvent.

With aliphatic amines the reactions could be carried out in the absence of inorganic base but they required reaction times much longer than those for the other nucleophiles even when

DOI: 10.1039/b106487h

J. Chem. Soc., Perkin Trans. 1, 2001, 3167–3173 3167

[†] Electronic supplementary information (ESI) available: experimental data for compounds 1–15. See http://www.rsc.org/suppdata/p1/b1/ b106487h/

Table 1 Results obtained in the addition of nucleophiles to $P-\Delta Ala(N-Boc)$ -OMe 1–7

I d Boc-Ala(N-Boc, β-benzylamino)-OMe Id 79 2 1 e Boc-Ala(N-Boc, β-cyclohexylamino)-OMe Ie 72 3 1 f Boc-Ala(N-Boc, β-(c4-aminophenylsulfanyl)]-OMe If 87 4 1 g Boc-Ala(N-Boc, β-(c4-aminophenylsulfanyl)]-OMe Ig 83 5 1 h Boc-Ala(N-Boc, β-(c4-dixocycarbony)methyl]-OMe Ig 83 6 1 i Boc-Ala(N-Boc, β-(c4-dixocycarbony)methyl])-OMe Ig 94 7 1 j Boc-Ala(N-Boc, β-phenylsulfanyl)-OMe Za 94 7 1 j Boc-Ala(N-Boc, β-phenylsulfanyl)-OMe Za 93 10 3 a Z(NO ₂)-Ala(N-Boc, β-phenylsulfanyl)-OMe 3b 90 12 4 a Bz-Ala(N-Boc, β-phenylsulfanyl)-OMe 4a 96 13 b Z(NO ₂)-Ala(N-Boc, β-phenylsulfanyl)-OMe 4a 96 14 4 Bz-Ala(N-Boc, β-phenylsulfanyl)-OMe 4a 96 15 5 a Bz(NO ₂)-Ala(N-Boc, β-phenylsulfanyl)-OMe 4b 98 16 b	Entry	Р	NuH	Product (compound no.)	Yield/%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	d	Boc-Ala(<i>N</i> -Boc,β-benzylamino)-OMe 1d	79
3 1 f Boc-Ala[N-Boc, β -bis(ethoxycarbony]methyl]-OMe If 87 4 1 g Boc-Ala[N-Boc, β -bis(ethoxycarbony]methyl]-OMe Ig 83 5 1 h Boc-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe If 80 6 1 i Boc-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe Ii 81 7 1 j Boc-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe Ii 83 8 2 a Z-Ala(N-Boc, β -phenylsulfanyl)-OMe Ig 83 9 2 b Z-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 2b 93 10 3 a Z(NO)-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 3b 90 12 4 a Bz-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 4b 96 13 4 b Bz-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 4b 96 14 4 h Bz-Ala(N-Boc, β -phenylsulfanyl)-OMe 4b 33 15 5 a Bz(NO)-Ala(N-Boc, β -phenylsulfanyl)-OMe 4b 83 16 5 b Bz(NO)-Ala(N-Boc, β -phenylsulfanyl)-OMe 5a 83 16 6 <td< td=""><td>2</td><td>1</td><td>e</td><td>Boc-Ala(N-Boc,β-cyclohexylamino)-OMe 1e</td><td>72</td></td<>	2	1	e	Boc-Ala(N-Boc,β-cyclohexylamino)-OMe 1e	72
41gBoc-Ala[N-Boc,β-bis(ethoxycarbony])methyl]-OMe 1g8351hBoc-Ala[N-Boc,β-(2,6-dioxocyclohexyl]-OMe 1h8061iBoc-Ala[N-Boc,β-diacety[methoxycarbony]]-OMe 1h9471jBoc-Ala[N-Boc,β-diacety[methoxycarbony]]methyl]]-OMe 1i9471jBoc-Ala[N-Boc,β-diacety[methoxycarbony]]methylsulfany]-OMe 2b9392bZ-Ala(N-Boc,β-phenylsulfanyl)-OMe 2a9392bZ-Ala(N-Boc,β-phenylsulfanyl)-OMe 3a90103aZ(NO ₂)-Ala(N-Boc,β-phenylsulfanyl)-OMe 4a96134bBz-Ala[N-Boc,β-phenylsulfanyl)-OMe 4a96144hBz-Ala[N-Boc,β-phenylsulfanyl)-OMe 4a96155aBz(NO ₂)-Ala(N-Boc,β-phenylsulfanyl)-OMe 4a33165bBz/Ala[N-Boc,β-phenylsulfanyl)-OMe 4a83176aTos-Ala(N-Boc,β-phenylsulfanyl)-OMe 5a87186aBoc-AAla(B-octylsulfanyl)-OMe 5a83196bBoc-AAla(B-octylsulfanyl)-OMe 6a83206cBoc-AAla(B-octylsulfanyl)-OMe 6a83216dTos-Ala(N-Boc,β-benzylamino)-OMe 6a83226gTos-Ala(N-Boc,β-benzylamino)-OMe 6a83236gTos-Ala(N-Boc,β-benzylamino)-OMe 6a83246hTos-Ala(N-Boc,β-benzylamino)-OMe 6a84256i2-(et	3	1	f	Boc-Ala[N-Boc,β-(4-aminophenylsulfanyl)]-OMe 1f	87
51hBoc-Ala[<i>N</i> -Boc,β-(2,6-dioxocyclohexyl)]-OMe 1h8061iBoc-Ala(<i>N</i> -Boc,β-(acctyl(methhoxycarbonyl)methyl)]-OMe 1i9471jBoc-Ala(<i>N</i> -Boc,β-(acctyl(methhoxycarbonyl)methyl)]-OMe 1i8382aZ-Ala(<i>N</i> -Boc,β-phenylsulfanyl)-OMe 2a9492bZ-Ala(<i>N</i> -Boc,β-phenylsulfanyl)-OMe 2a93103aZ(NO ₂)-Ala(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 3b95113bZ(NO ₂)-Ala(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 4b96134bBz-Ala(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 4b96144hBz-Ala(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 4b96155aBz(NO ₂)-Ala(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 4b96144hBz-Ala(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 5a87165bBz(NO ₂)-Ala(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 5b98176aTos-Ala(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 5b86206cBoc-AAla(β-methoxycarbonylmethylsulfanyl)-OMe 8b86216dTos-Ala(<i>N</i> -Boc,β-benzylamino)-OMe 6d81226gTos-Ala(<i>N</i> -Boc,β-bioxylamino)-OMe 6d81236gTos-Ala(<i>N</i> -Boc,β-bioxecyclohexyl)]-OMe 6h84246hTos-Ala(<i>N</i> -Boc,β-priadzordonyl)methylsulfanyl)-OMe 6g84256i2-(ter	4	1	g	$Boc-Ala[N-Boc,\beta-bis(ethoxycarbonyl)methyl]-OMe 1g$	83
61iBoc-Ala(N-Boc, \beta-facety/(methoxycarbony))methyl]-OMe 1i9471jBoc-Ala(N-Boc, β-diacety/(methyl)-OMe 2a8382aZ-Ala(N-Boc, β-diacety/imethyl)-OMe 2a9492bZ-Ala(N-Boc, β-penylsulfanyl)-OMe 2a93103aZ(NO_2)-Ala(N-Boc, β-penylsulfanyl)-OMe 3a95113bZ(NO_2)-Ala(N-Boc, β-penylsulfanyl)-OMe 3a96124aBz-Ala(N-Boc, β-penylsulfanyl)-OMe 4a96134bBz-Ala(N-Boc, β-penylsulfanyl)-OMe 4a96144hBz-Ala(N-Boc, β-penylsulfanyl)-OMe 4a33155aBz(NO_2)-Ala(N-Boc, β-penylsulfanyl)-OMe 4a83165bBz(NO_2)-Ala(N-Boc, β-penylsulfanyl)-OMe 5a87165bBz(NO_2)-Ala(N-Boc, β-phenylsulfanyl)-OMe 5a83176aTos-Ala(A-Boc, β-phenylsulfanyl)-OMe 6a83186aBoc-AAla(β-pethonylsulfanyl)-OMe 6a83206cBoc-AAla(β-pethonylsulfanyl)-OMe 8a83216dTos-Ala(N-Boc, β-benzylamino)-OMe 6c83236gTos-Ala(N-Boc, β-benzylamino)-OMe 6a84246hTos-Ala(N-Boc, β-benzylamino)-OMe 6a84256i2-(err-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9i88266i4-acetyl-2-(err-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofu	5	1	ĥ	Boc-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 1h	80
71jBoc-Ala(N-Boc, β -diacetylmethyl)-OMe 1j8382aZ-Ala(N-Boc, β -phenylsulfanyl)-OMe 2a9492bZ-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 2b93103aZ(NO_2)-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 3b90124aBz-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 3b90124aBz-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 3b96134bBz-Ala(N-Boc, β -phenylsulfanyl)-OMe 4a96144hBz-Ala(N-Boc, β -phenylsulfanyl)-OMe 4b96155aBz(NO_2)-Ala(N-Boc, β -phenylsulfanyl)-OMe 4b96165bBz(NO_2)-Ala(N-Boc, β -phenylsulfanyl)-OMe 4b83165bBz(NO_2)-Ala(N-Boc, β -phenylsulfanyl)-OMe 6a83176aTos-Ala(N-Boc, β -phenylsulfanyl)-OMe 6a83186aBoc-AAla(B-phenylsulfanyl)-OMe 8b86206cBoc-AAla(B-cyt)sulfanyl)-OMe 6c83216dTos-Ala(N-Boc, β -cyclohexylamino)-OMe 6g83226gTos-Ala(N-Boc, β -cyclohexylamino)-OMe 6g72246hTos-Ala(N-Boc, β -cyclohexylamino)-OMe 6g84256j4-acetyl-2-(tert-butoxycarbonylmethylogrationalyl-5-methyl-2,3-dihydrofuran 9j86266j4-acetyl-2-(tert-butoxycarbonylamino)-2.4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9	6	1	i	Boc-Ala{N-Boc,β-[acetyl(methoxycarbonyl)methyl]}-OMe 1i	94
8 2 a Z-Ala(N-Boc, β -phenylsulfanyl)-OMe 2a 94 9 2 b Z-Ala(N-Boc, β -phenylsulfanyl)-OMe 2a 93 10 3 a Z(NO ₂)-Ala(N-Boc, β -phenylsulfanyl)-OMe 2b 95 11 3 b Z(NO ₂)-Ala(N-Boc, β -phenylsulfanyl)-OMe 3a 90 12 4 a Bz-Ala(N-Boc, β -phenylsulfanyl)-OMe 4a 96 13 4 b Bz-Ala(N-Boc, β -phenylsulfanyl)-OMe 4a 96 14 4 h Bz-Ala(N-Boc, β -phenylsulfanyl)-OMe 4b 96 15 5 a Bz(NO ₂)-Ala(N-Boc, β -phenylsulfanyl)-OMe 5b 98 17 6 a Tos-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 5b 98 18 6 a Boc-AAla(β -phenylsulfanyl)-OMe 6a 83 19 6 b Boc-AAla(β -phenylsulfanyl)-OMe 8a 83 19 6 b Boc-AAla(β -phenylsulfanyl)-OMe 8a 83 19 6 a Tos-Ala(N-Boc, β -phenylsulfanyl)-OMe 6a 83 21 6 a Tos-Ala(β -phenylsulfanyl)-OMe 6a 83 23 6 g Tos-Ala(β -botxycarbonylmethylsulfanyl)-OMe 8b 86 23 6 g Tos-Ala(β -botxylamino)-OMe 6c 83 23 6 g Tos-Ala(N-Boc, β -phenylsulfanyl)-OMe 6a 83 23 6 g Tos-Ala(N-Boc, β -beitylamino)-OMe 6c 83 23 6 g Tos-Ala(N-Boc, β -beitylamino)-OMe 6c 83 23 6 g Tos-Ala(N-Boc, β -beitylamino)-OMe 6c 83 24 6 h Tos-Ala(N-Boc, β -bitethoxycarbonylmethoxycarbonyl-5-methyl-2,3-dihydrofuran 9i 86 26 6 i 2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i 86 26 6 j 4-acetyl-2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i 86 26 6 j 4-acetyl-2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i 86 27 6 k Tos-Ala(N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 6 6n 26 28 6 1 Tos-Ala(N-Boc, β -(3-formylindol-1-tyl)-OMe ⁶ 6n 26 29 6 m Tos-Ala(N-Boc, β -(3-formylindol-1-tyl)-OMe ⁶ 6n 96 30 6 n Tos-Ala(N-Boc, β -phenylsulfanyl)-OMe 7a 72 31 7 b Tos-Gly(N-Boc)-Ala(N-Boc, β -phenylsulfanyl)-OMe 7a 37 34 7 h Tos-Gly(N-Boc)-Ala(N-Boc, β -phenylsulfanyl)-OMe 7b 90 33 7 d Tos-Gly(N-Boc)-Ala(N-Boc, β -phenylsulfanyl)-OMe 7b 90	7	1	j	Boc-Ala(N-Boc,β-diacetylmethyl)-OMe 1	83
92bZ-Ala(N-Boc,\beta-methoxycarbonylmethylsulfanyl)-OMe 2b93103aZ(NO ₂)-Ala(N-Boc, β-methoxycarbonylmethylsulfanyl)-OMe 3a95113bZ(NO ₂)-Ala(N-Boc, β-methoxycarbonylmethylsulfanyl)-OMe 3b90124aBz-Ala(N-Boc, β-methoxycarbonylmethylsulfanyl)-OMe 4a96134bBz-Ala(N-Boc, β-methoxycarbonylmethylsulfanyl)-OMe 4b96144hBz-Ala(N-Boc, β-phenylsulfanyl)-OMe 4b33155aBz(NO ₂)-Ala(N-Boc, β-phenylsulfanyl)-OMe 5a87165bBz(NO ₂)-Ala(N-Boc, β-phenylsulfanyl)-OMe 5a83176aTos-Ala(N-Boc, β-phenylsulfanyl)-OMe 6a83186aBoc-AAla(β-phenylsulfanyl)-OMe 8a83196bBoc-AAla(β-phenylsulfanyl)-OMe 8b86206cBoc-AAla(β-benzylamino)-OMe 6d81216dTos-Ala(N-Boc, β-benzylamino)-OMe 6g83236gTos-Ala(N-Boc, β-(c, d-ioxocyclohexyl))-OMe 6g84256i2-(tert-butoxycarbonylamino)-2.4-bis(methoxycarbonyl-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2.4-bis(methoxycarbonyl-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2.4-bis(methoxycarbonyl-5-methyl-2,3-dihydrofuran 9i88276kTos-Ala(N-Boc, β-(f, d-ioxocyclohexyl))-OMe 6n412861<	8	2	a	Z-Ala(N -Boc, β -phenylsulfanyl)-OMe 2a	94
103a $Z(NO_2)$ -Ala(λ' -Boc, β -phenylsulfanyl)-OMe 3a95113b $Z(NO_2)$ -Ala(λ' -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 3b90124aBz-Ala(λ' -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 3b96134bBz-Ala(λ' -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 4b96144hBz-Ala(λ' -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 4b33155aBz(NO_2)-Ala(λ' -Boc, β -phenylsulfanyl)-OMe 5a87165bBz(NO_2)-Ala(λ' -Boc, β -phenylsulfanyl)-OMe 6a83176aTos-Ala(λ' -Boc, β -phenylsulfanyl)-OMe 6a83186aBoc- Δ Ala(β -phenylsulfanyl)-OMe 8a86206cBoc- Δ Ala(β -metoxycarbonylmethylsulfanyl)-OMe 8b86216dTos-Ala(λ' -Boc, β -benzylamino)-OMe 6d81226eTos-Ala(λ' -Boc, β -cyclohexylamino)-OMe 6g72246hTos-Ala(λ' -Boc, β -indexycarbonylmethyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2,-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala(λ' -Boc, β -indicatol-1-yl)-OMe ⁹ 6h722861Tos-Ala(λ' -Boc, β -(3-formylindol-1-yl)-OMe ⁹ 6n96306nTos-Ala(λ' -Boc, β -phenylsulfanyl)-OMe ⁹ 6n95317aTos-Gly(λ' -Boc, β -phenylsulfanyl)-OMe ⁷ 6n90337 <td>9</td> <td>2</td> <td>b</td> <td>Z-Ala(<i>N</i>-Boc,β-methoxycarbonylmethylsulfanyl)-OMe 2b</td> <td>93</td>	9	2	b	Z-Ala(<i>N</i> -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 2b	93
113b $Z(NO_2)$ -Ala(N -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 3b90124aBz-Ala(N -Boc, β -phenylsulfanyl)-OMe 4a96134bBz-Ala(N -Boc, β -phenylsulfanyl)-OMe 4b96144hBz-Ala(N -Boc, β -c, 6-dioxocyclohexyl)]-OMe 4h33155aBz(NO_2)-Ala(N -Boc, β -phenylsulfanyl)-OMe 5a87165bBz(NO_2)-Ala(N -Boc, β -phenylsulfanyl)-OMe 5a83176aTos-Ala(N -Boc, β -phenylsulfanyl)-OMe 6a83186aBoc-AAla(β -bentylsulfanyl)-OMe 8a86206cBoc-AAla(β -benzylamino)-OMe 6d81216dTos-Ala(N -Boc, β -cyclohexyl]mino)-OMe 6d81226cTos-Ala(N -Boc, β -benzylamino)-OMe 6e83236gTos-Ala(N -Boc, β -benzylamino)-OMe 6a83236gTos-Ala(N -Boc, β -cyclohexyl]-OMe 6g72246hTos-Ala(N -Boc, β -cyclohexyl]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acctyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala(N -Boc, β -prirazol-1-yl)-OMe ⁹ 6n722861Tos-Ala(N -Boc, β -prirazol-1-yl)-OMe ⁹ 6n96306nTos-Ala(N -Boc, β -prirazol-1-yl)-OMe ⁹ 6n95 <td>10</td> <td>3</td> <td>a</td> <td>$Z(NO_2)$-Ala(<i>N</i>-Boc, \beta-phenylsulfanyl)-OMe 3a</td> <td>95</td>	10	3	a	$Z(NO_2)$ -Ala(<i>N</i> -Boc, \beta-phenylsulfanyl)-OMe 3a	95
124aBz-Ala(N-Boc,\beta-phenylsulfanyl)-OMe 4a96134bBz-Ala(N-Boc,\beta-methoxycarbonylmethylsulfanyl)-OMe 4b96144hBz-Ala[N-Boc,\beta-(2,6-dioxocyclohexyl)]-OMe 4h33155aBz(NO_2)-Ala(N-Boc,\beta-phenylsulfanyl)-OMe 5a87165bBz(NO_2)-Ala(N-Boc,\beta-phenylsulfanyl)-OMe 5a88165bBz(NO_2)-Ala(N-Boc,\beta-phenylsulfanyl)-OMe 6a83186aBoc-AAla(β-phenylsulfanyl)-OMe 8a83196bBoc-AAla(β-phenylsulfanyl)-OMe 8c78216dTos-Ala(N-Boc, β-benzylamino)-OMe 6d81226eTos-Ala(N-Boc, β-cyclohexylamino)-OMe 6g83236gTos-Ala(N-Boc, β-2,6-dioxocyclohexyl))-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j86276kTos-Ala[N-Boc, β-(3-formylindol-1-yl)-OMe ⁹ 6h722861Tos-Ala[N-Boc, β-(3-formylindol-1-yl)-OMe ⁹ 6n96306nTos-Ala[N-Boc, β-(3-formylindol-1-yl)-OMe ⁹ 6n95317aTos-Gly(N-Boc, β-phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc, A-la(N-Boc, β-phenylsulfanyl)-OMe 7a87337dTos-Gly(N-Boc)-Ala(N-Boc, β-phenylsulfanyl)-OMe 7b90 <td>11</td> <td>3</td> <td>b</td> <td>$Z(NO_2)$-Ala(<i>N</i>-Boc, β-methoxycarbonylmethylsulfanyl)-OMe 3b</td> <td>90</td>	11	3	b	$Z(NO_2)$ -Ala(<i>N</i> -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 3b	90
134bBz-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 4b96144hBz-Ala(N-Boc, β -(2, 6-dioxocyclohexyl)]-OMe 4h33155aBz(NO_2)-Ala(N-Boc, β -phenylsulfanyl)-OMe 5a87165bBz(NO_2)-Ala(N-Boc, β -phenylsulfanyl)-OMe 5a98176aTos-Ala(N-Boc, β -phenylsulfanyl)-OMe 6a83186aBoc-AAla(β -phenylsulfanyl)-OMe 8a83196bBoc-AAla(β -octylsulfanyl)-OMe 8c78206cBoc-AAla(β -octylsulfanyl)-OMe 8c81216dTos-Ala(N-Boc, β -benzylamino)-OMe 6d81226eTos-Ala(N-Boc, β -benzylamino)-OMe 6e83236gTos-Ala(N-Boc, β -cyclohexylamino)-OMe 6e83246hTos-Ala(N-Boc, β -benzylamino)-OMe 6h84256i2-(tert-butoxycarbonylmethyl)-OMe 6h84266j4-acetyl-2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala(N-Boc, β -jornylindol-1-yl)-OMe 6h41296mTos-Ala(N-Boc, β -pyrazol-1-yl)-OMe 696306nTos-Ala(N-Boc, β -pyrazol-1-yl)-OMe 9 6n96306nTos-Ala(N-Boc, β -phenzylamino)-OMe 7a95317aTos-Gly(N-Boc)-Ala(N-Boc, β -benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala(N-Boc,	12	4	a	$Bz-Ala(N-Boc,\beta-phenylsulfanyl)-OMe$ 4a	96
144hBz-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 4h33155aBz(NO_2)-Ala(N-Boc, β -phenylsulfanyl)-OMe 5a87165bBz(NO_2)-Ala(N-Boc, β -phenylsulfanyl)-OMe 5a87165bBz(NO_2)-Ala(N-Boc, β -phenylsulfanyl)-OMe 6a83176aTos-Ala(β -phenylsulfanyl)-OMe 6a83186aBoc- Δ Ala(β -phenylsulfanyl)-OMe 8a83196bBoc- Δ Ala(β -methoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc- Δ Ala(β -nethoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc- Δ Ala(β -nethoxycarbonylmethylsulfanyl)-OMe 6a83216dTos-Ala(N -Boc, β -benzylamino)-OMe 6d81226eTos-Ala(N -Boc, β -benzylamino)-OMe 6e83236gTos-Ala[N -Boc, β -benzylamino)-OMe 6g72246hTos-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 6g72246hTos-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N -Boc, β -(1,2,4-triazol-1-yl)-OMe 6h41296mTos-Ala[N -Boc, β -(1,2,4-triazol-1-yl)-OMe 7695317aTos-Gly(N -Boc)-Ala(N -Boc, β -p	13	4	b	$Bz-Ala(N-Boc,\beta-methoxycarbonylmethylsulfanyl)-OMe 4b$	96
155a $Bz(NO_2)-Ala(N-Boc,\beta-phenylsulfanyl)-OMe 5a87165bBz(NO_2)-Ala(N-Boc,\beta-methoxycarbonylmethylsulfanyl)-OMe 5b98176aTos-Ala(N-Boc,\beta-phenylsulfanyl)-OMe 6a83186aBoc-AAla(\beta-methoxycarbonylmethylsulfanyl)-OMe 8b83196bBoc-AAla(\beta-methoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc-AAla(\beta-methoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc-AAla(\beta-benzylamino)-OMe 6d81216dTos-Ala(N-Boc,\beta-benzylamino)-OMe 6d81226eTos-Ala(N-Boc,\beta-cyclohexylamino)-OMe 6g83236gTos-Ala(N-Boc,\beta-cyclohexylamino)-OMe 6g83246hTos-Ala[N-Boc,\beta-(2,6-dioxocyclohexyl)]-OMe 6g72246hTos-Ala[N-Boc,\beta-(2,6-dioxocyclohexyl)]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N-Boc,\beta-(i-dioxocyclohexyl)]-OMe 6h722861Tos-Ala[N-Boc,\beta-(i-dioxocyclohexyl)]-OMe 6h41296mTos-Ala[N-Boc,\beta-(i-dioxocyclohexyl)]-OMe 7a95317aTos-Ala[N-Boc,\beta-(1,2,4-triazol-1-yl)-OMe 9 6n95327bTos-Gly(N-Boc)-Ala(N-Boc,\beta-phenz$	14	4	h	$Bz-Ala[N-Boc,\beta-(2,6-dioxocyclohexyl)]-OMe 4h$	33
165b $Bz(NO_2)$ -Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 5b98176aTos-Ala(N-Boc, β -phenylsulfanyl)-OMe 6a83186aBoc-AAla(β -phenylsulfanyl)-OMe 8a83196bBoc-AAla(β -methoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc-AAla(β -nethoxycarbonylmethylsulfanyl)-OMe 8b86216dTos-Ala(β -octylsulfanyl)-OMe 6c81226eTos-Ala(N -Boc, β -benzylamino)-OMe 6d81236gTos-Ala[N -Boc, β -cyclohexylamino)-OMe 6g72246hTos-Ala[N -Boc, β -bis(ethoxycarbonyl)methyl]-OMe 6g72246hTos-Ala[N -Boc, β -(β -cdixocyclohexyl)]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-actyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala(N -Boc, β -(3-formylindol-1-yl)]-OMe ⁹ 6k72286ITos-Ala[N -Boc, β -(3-formylindol-1-yl)]-OMe ⁹ 6n96306nTos-Ala[N -Boc, β -(1,2,4-triazol-1-yl)]-OMe ⁹ 6n97317aTos-Gly(N -Boc)-Ala(N -Boc, β -methoxycarbonylatinyl)-OMe 7b90337bTos-Gly(N -Boc)-Ala(N -Boc, β -methoxycarbonylethylsulfanyl)-OMe 7b53347hTos-Gly(N -Boc)-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h6	15	5	a	$Bz(NO_2)$ -Ala(N-Boc, \beta-phenylsulfanyl)-OMe 5a	87
176aTos-Ala(N-Boc, \beta-phenylsulfanyl)-OMe 6a83186aBoc-AAla(β -phenylsulfanyl)-OMe 8a83196bBoc-AAla(β -methoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc-AAla(β -octylsulfanyl)-OMe 8c78216dTos-Ala(N-Boc, β -benzylamino)-OMe 6d81226eTos-Ala(N-Boc, β -cyclohexylamino)-OMe 6d81236gTos-Ala[N-Boc, β -cyclohexylamino)-OMe 6d83236gTos-Ala[N-Boc, β -cyclohexylamino)-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N-Boc, β -(j-formylindol-1-yl)]-OMe 6k722861Tos-Ala[N-Boc, β -(j-formylindol-1-yl)]-OMe 641296mTos-Ala[N-Boc, β -(j-formylindol-1-yl)]-OMe 696306nTos-Ala[N-Boc, β -(j-formylindol-1-yl)]-OMe 695317aTos-Ala[N-Boc, β -(henycarbonylmethylsulfanyl)-OMe 7b90337dTos-Gly(N-Boc)-Ala(N-Boc, β -benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala[N-Boc, β -(c, 6-dioxocyclohexyl)]-OMe 7h60	16	5	b	$Bz(NO_2)$ -Ala(N-Boc, \beta-methoxycarbonylmethylsulfanyl)-OMe 5b	98
186aBoc- $\Delta Ala(\beta$ -phenylsulfanyl)-OMe 8a83196bBoc- $\Delta Ala(\beta$ -methoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc- $\Delta Ala(\beta$ -methoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc- $\Delta Ala(\beta$ -octylsulfanyl)-OMe 8c78216dTos-Ala(N -Boc, β -benzylamino)-OMe 6d81226eTos-Ala(N -Boc, β -cyclohexylamino)-OMe 6g83236gTos-Ala[N -Boc, β -cyclohexylamino)-OMe 6g72246hTos-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N -Boc, β -(indiazol-1-yl)-OMe ⁹ 6k722861Tos-Ala[N -Boc, β -(j-formylindol-1-yl)]-OMe ⁹ 6n96306nTos-Ala[N -Boc, β -(1,2,4-triazol-1-yl)]-OMe ⁹ 6n95317aTos-Gly(N -Boc)-Ala(N -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 7b90337dTos-Gly(N -Boc)-Ala(N -Boc, β -henzylamino)-OMe 7d53347hTos-Gly(N -Boc)-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h60	17	6	a	Tos-Ala(N -Boc, β -phenylsulfanyl)-OMe 6a	83
196bBoc- Δ Ala(β -methoxycarbonylmethylsulfanyl)-OMe 8b86206cBoc- Δ Ala(β -octylsulfanyl)-OMe 8c78216dTos-Ala(N -Boc, β -benzylamino)-OMe 6d81226eTos-Ala(N -Boc, β -benzylamino)-OMe 6e83236gTos-Ala(N -Boc, β -cyclohexylamino)-OMe 6g72246hTos-Ala[N -Boc, β -bis(ethoxycarbonyl)methyl]-OMe 6g72246hTos-Ala[N -Boc, β -(2, 6-dioxocyclohexyl)]-OMe 6h84256i2-(<i>tert</i> -butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(<i>tert</i> -butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N -Boc, β -(3-formylindol-1-yl)-OMe ⁹ 6k722861Tos-Ala[N -Boc, β -(3-formylindol-1-yl)]-OMe 6l41296mTos-Ala[N -Boc, β -(1,2,4-triazol-1-yl)]-OMe ⁹ 6n96306nTos-Ala[N -Boc, β -phenzylariol-1-yl)]-OMe ⁹ 6n95317aTos-Gly(N -Boc)-Ala(N -Boc, β -methoxycarbonylimethylsulfanyl)-OMe 7b90337dTos-Gly(N -Boc)-Ala(N -Boc, β -benzylamino)-OMe 7d53347hTos-Gly(N -Boc)-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h60	18	6	a	$Boc-\Delta Ala(\beta-phenylsulfanyl)-OMe 8a$	83
206cBoc- Δ Ala(β -octylsulfanyl)-OMe 8c78216dTos-Ala(N -Boc, β -benzylamino)-OMe 6d81226eTos-Ala(N -Boc, β -cyclohexylamino)-OMe 6e83236gTos-Ala(N -Boc, β -cyclohexylamino)-OMe 6g72246hTos-Ala(N -Boc, β -bis(choxycarbonyl)methyl]-OMe 6g72246hTos-Ala(N -Boc, β -cyclohexylamino)-2, 4-bis(methoxycarbonyl)-5-methyl-2, 3-dihydrofuran 9i86256i2-(tert-butoxycarbonylamino)-2, 4-bis(methoxycarbonyl)-5-methyl-2, 3-dihydrofuran 9j88266j4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2, 3-dihydrofuran 9j88276kTos-Ala(N -Boc, β -imidazol-1-yl)-OMe ⁹ 6k722861Tos-Ala(N -Boc, β -(3-formylindol-1-yl)]-OMe ⁹ 6n96306nTos-Ala(N -Boc, β -(1,2,4-triazol-1-yl)]-OMe ⁹ 6n95317aTos-Gly(N -Boc)-Ala(N -Boc, β -phenylsulfanyl)-OMe 7a87327bTos-Gly(N -Boc)-Ala(N -Boc, β -henzylamino)-OMe 7d53347hTos-Gly(N -Boc)-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h60	19	6	b	$Boc-\Delta Ala(\beta-methoxycarbonylmethylsulfanyl)-OMe 8b$	86
216dTos-Ala(N-Boc, \beta-benzylamino)-OMe 6d81226eTos-Ala(N-Boc, \beta-cyclohexylamino)-OMe 6e83236gTos-Ala[N-Boc, \beta-cyclohexylamino)-OMe 6g72246hTos-Ala[N-Boc, \beta-(2,6-dioxocyclohexyl)]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N-Boc, β-imidaz0-1-yl)-OMe 6k722861Tos-Ala[N-Boc, β-(3-formylindo)-1-yl)-OMe 6k72296mTos-Ala[N-Boc, β-(3-formylindo)-1-yl)-OMe ⁹ 6m96306nTos-Ala[N-Boc, β-(1, 2,4-triaz0-1-yl)]-OMe ⁹ 6n95317aTos-Gly(N-Boc, β-penz0-1-yl)-OMe ⁹ 6n87327bTos-Gly(N-Boc, β-methoxycarbonylindinyl)-OMe 7b90337dTos-Gly(N-Boc, β-benzylamino)-OMe 7d53347hTos-Gly(N-Boc, β-(2,6-dioxocyclohexyl)]-OMe 7h60	20	6	c	Boc- Δ Ala(β -octylsulfanyl)-OMe 8c	78
226eTos-Ala(N-Boc, \beta-cyclohexylamino)-OMe 6e83236gTos-Ala[N-Boc, \beta-bis(ethoxycarbonyl)methyl]-OMe 6g72246hTos-Ala[N-Boc, \beta-(2,6-dioxocyclohexyl)]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N-Boc,\beta-imidazol-1-yl)-OMe ⁹ 6k72286ITos-Ala[N-Boc,\beta-(3-formylindol-1-yl)]-OMe 6l41296mTos-Ala[N-Boc,\beta-(3-formylindol-1-yl)]-OMe ⁹ 6m96306nTos-Ala[N-Boc,\beta-(1,2,4-triazol-1-yl)]-OMe ⁹ 6n95317aTos-Gly(N-Boc)-Ala(N-Boc, β-phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc, β-benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala[N-Boc, β-(2,6-dioxocyclohexyl)]-OMe 7h60	21	6	d	$Tos-Ala(N-Boc,\beta-benzylamino)-OMe$ 6d	81
236gTos-Ala[N-Boc,β-bis(ethoxycarbonyl)methyl]-OMe 6g72246hTos-Ala[N-Boc,β-(2,6-dioxocyclohexyl)]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N-Boc,β-imidazol-1-y])-OMe ⁹ 6k72286ITos-Ala[N-Boc,β-(3-formylindol-1-yl)]-OMe 6l41296mTos-Ala[N-Boc,β-(3-formylindol-1-yl)]-OMe ⁹ 6m96306nTos-Ala[N-Boc,β-(1,2,4-triazol-1-yl)]-OMe ⁹ 6n95317aTos-Gly(N-Boc)-Ala(N-Boc,β-phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc,β-benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala[N-Boc,β-(2,6-dioxocyclohexyl)]-OMe 7h60	22	6	e	Tos-Ala(N-Boc,β-cyclohexylamino)-OMe 6e	83
246hTos-Ala[N-Boc,\beta-(2,6-dioxocyclohexyl)]-OMe 6h84256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala[N-Boc,\beta-imidazol-1-y])-OMe ⁹ 6k72286ITos-Ala[N-Boc,\beta-(3-formylindol-1-yl)]-OMe 6l41296mTos-Ala[N-Boc,\beta-(3-formylindol-1-yl)]-OMe ⁹ 6m96306nTos-Ala[N-Boc,β-(2,4-triazol-1-yl)]-OMe ⁹ 6n96317aTos-Gly(N-Boc)-Ala(N-Boc,β-phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc,β-enzthoxycarbonylmethylsulfanyl)-OMe 7b90337dTos-Gly(N-Boc)-Ala[N-Boc,β-(2,6-dioxocyclohexyl)]-OMe 7h60	23	6	g	$Tos-Ala[N-Boc,\beta-bis(ethoxycarbonyl)methyl]-OMe 6g$	72
256i2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i86266j4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala(N-Boc, β -imidazol-1-yl)-OMe ° 6k72286ITos-Ala[N-Boc, β -(3-formylindol-1-yl)]-OMe ° 6k41296mTos-Ala[N-Boc, β -(3-formylindol-1-yl)]-OMe ° 6n96306nTos-Ala[N-Boc, β -(pyrazol-1-yl)]-OMe ° 6n95317aTos-Gly(N-Boc)-Ala(N-Boc, β -phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc, β -benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h60	24	6	ĥ	Tos-Ala[N -Boc, β -(2,6-dioxocyclohexyl)]-OMe 6h	84
266j4-acetyl-2-(<i>tert</i> -butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j88276kTos-Ala(N-Boc, β -imidazol-1-yl)-OMe ⁹ 6k72286ITos-Ala[N-Boc, β -(3-formylindol-1-yl)]-OMe 6l41296mTos-Ala(N-Boc, β -pyrazol-1-yl)-OMe ⁹ 6m96306nTos-Ala[N-Boc, β -(1,2,4-triazol-1-yl)]-OMe ⁹ 6n95317aTos-Gly(N-Boc)-Ala(N-Boc, β -phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc, β -benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h60	25	6	i	2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i	86
276kTos-Ala(N-Boc, \beta-imidazol-1-yl)-OMe 9 6k722861Tos-Ala[N-Boc, \beta-(3-formylindol-1-yl)]-OMe 6 l41296mTos-Ala(N-Boc, \beta-pyrazol-1-yl)-OMe 9 6m96306nTos-Ala[N-Boc, \beta-(1,2,4-triazol-1-yl)]-OMe 9 6n95317aTos-Gly(N-Boc)-Ala(N-Boc, \beta-phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc, β-methoxycarbonylmethylsulfanyl)-OMe 7b90337dTos-Gly(N-Boc)-Ala[N-Boc, β-(2,6-dioxocyclohexyl)]-OMe 7h60	26	6	j	4-acetyl-2-(<i>tert</i> -butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j	88
286ITos-Ala[N-Boc, β -(3-formylindol-1-yl)]-OMe 6l41296mTos-Ala[N-Boc, β -pyrazol-1-yl)-OMe 9 6m96306nTos-Ala[N-Boc, β -(1,2,4-triazol-1-yl)]-OMe 9 6n95317aTos-Gly(N-Boc)-Ala(N-Boc, β -phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 7b90337dTos-Gly(N-Boc)-Ala(N-Boc, β -benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h60	27	6	k	Tos-Ala(N -Boc, β -imidazol-1-yl)-OMe ⁹ 6k	72
296mTos-Ala(N-Boc, \beta-pyrazol-1-yl)-OMe 96m 96306nTos-Ala[N-Boc, \beta-(1,2,4-triazol-1-yl)]-OMe 96n 95317aTos-Gly(N-Boc)-Ala(N-Boc, \beta-phenylsulfanyl)-OMe 7a 87327bTos-Gly(N-Boc)-Ala(N-Boc, \beta-methoxycarbonylmethylsulfanyl)-OMe 7b 90337dTos-Gly(N-Boc)-Ala(N-Boc, \beta-benzylamino)-OMe 7d 53347hTos-Gly(N-Boc)-Ala[N-Boc, \beta-(2,6-dioxocyclohexyl)]-OMe 7h 60	28	6	1	$Tos-Ala[N-Boc,\beta-(3-formylindol-1-yl)]-OMe 6l$	41
306nTos-Ala[N-Boc, β -(1,2,4-triazol-1-yl)]-OMe 9 6n95317aTos-Gly(N-Boc)-Ala(N-Boc, β -phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 7b90337dTos-Gly(N-Boc)-Ala(N-Boc, β -benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h60	29	6	m	Tos-Ala(N -Boc, β -pyrazol-1-yl)-OMe ⁹ 6m	96
317aTos-Gly(N-Boc)-Ala(N-Boc,\beta-phenylsulfanyl)-OMe 7a87327bTos-Gly(N-Boc)-Ala(N-Boc,\beta-methoxycarbonylmethylsulfanyl)-OMe 7b90337dTos-Gly(N-Boc)-Ala(N-Boc,\beta-benzylamino)-OMe 7d53347hTos-Gly(N-Boc)-Ala[N-Boc,\beta-(2,6-dioxocyclohexyl)]-OMe 7h60	30	6	n	$Tos-Ala[N-Boc,\beta-(1,2,4-triazol-1-yl)]-OMe9 6n$	95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	7	a	Tos-Gly(N -Boc)-Ala(N -Boc, β -phenylsulfanyl)-OMe 7a	87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	7	b	Tos-Gly(N -Boc-)Ala(N -Boc, β -methoxycarbonylmethylsulfanyl)-OMe 7b	90
34 7 h Tos-Gly(<i>N</i> -Boc)-Ala[<i>N</i> -Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h 60	33	7	d	Tos-Gly(N-Boc)-Ala(N-Boc,β-benzylamino)-OMe 7d	53
	34	7	h	Tos-Gly(N-Boc)-Ala[N-Boc,β-(2,6-dioxocyclohexyl)]-OMe 7h	60

^a Pure non-recrystallised material.

Scheme 1

they were carried out in the presence of K_2CO_3 . Thus, 3-day reactions of Boc- $\Delta Ala(N$ -Boc)-OMe 1 with benzylamine (d) and cyclohexylamine (e) gave compounds 1d and 1e in yields of 79 and 72%, respectively (Scheme 1, Table 1). An attempt was made to attain reaction of benzylamine (d) with Bz- ΔAla -(*N*-Boc)-OMe 4; although 7 days later the starting dehydroamino acid derivative had been consumed, the only product obtained by column chromatography of the material collected from the reaction mixture was Boc- ΔAla -OMe. This resulted from aminolysis of the benzoyl group as mentioned with some nitrogen heterocycles,⁸ which in the case of amines was facilitated by their low reactivity as compared with thiols. Thus, we were able to take advantage of this feature to carry out the selective addition of the thiol function of 4-aminothiophenol (f) to Boc- Δ Ala(*N*-Boc)-OMe to prepare Boc-Ala[*N*-Boc, β -(4-aminophenylsulfanyl)]-OMe 1f in 87% yield. With Tos-Gly(*N*-Boc)- Δ Ala(*N*-Boc)-OMe, the product of addition of benzylamine (7d) was obtained in fair yield (53%). The reaction of Tos- Δ Ala(*N*-Boc)-OMe 6 with benzylamine (d) and cyclohexylamine (e) gave the addition products 6d and 6e in slightly higher yields (81 and 83%, respectively) than those reported above for the substrate having two Boc groups. These addition products did not undergo detosylation even when the reaction was extended for several days.

Addition of carbon nucleophiles of the β -dicarbonyl type was also performed; diethyl malonate (g), cyclohexane-1,3dione (h), methyl acetoacetate (i) and pentane-2,4-dione (j) were used for this purpose. When the substrate was Boc- Δ Ala-(N-Boc)-OMe the expected addition products (1g, 1h) were obtained in yields of around 80% (Scheme 1, Table 1). With Tos-Gly(N-Boc)- Δ Ala(N-Boc)-OMe as substrate, a yield of 60% for the product 7h of addition of cyclohexane-1,3-dione (h) was obtained. As observed with amines, when one of the Boc groups was replaced by Tos the reactions with diethyl malonate (g) and cyclohexane-1,3-dione (h) gave the addition products (6g and 6h) in yields of 72 and 84%, respectively. However, with methyl acetoacetate (i) and pentane-2,4-dione (j), which have at least one methyl group bonded to a carbonyl group, NMR spectroscopy revealed in both cases that the products (9i and 9i) had a CH₂ group. In fact, the ¹H spectrum showed for both compounds a well resolved AB quartet centred at δ 3.16 (-J = 15.9 Hz) and 3.23 (-J = 15.7 Hz), respectively, integrating for two protons, which is typical of the β -CH₂ group of amino acids having no α-proton.¹² In addition, ¹³C 'distortionless enhancement by polarisation transfer' (DEPT 135) spectra of these compounds showed a methylene group at δ_{C} 39.74 and 40.23, respectively. With this evidence, we propose for these compounds the structure resulting from spontaneous detosylation of the Michael adducts 6i and 6i followed by a rearrangement of the detosylated β-substituted alanine derivative via enolisation with attack of the enolic oxygen atom to the amino acid α -carbon, as shown in Scheme 2. These cyclic amino acids were obtained in yields of 86 and 88%, respectively.

Addition of the nucleophiles mentioned above to Boc- Δ Abu(*N*-Boc)-OMe **10** and Bz- Δ Abu(*N*-Boc)-OMe **11** under conditions identical to those described for reaction with the corresponding dehydroalanine derivatives was attempted (Scheme 3, Table 2). In the case of the heterocyclic nitrogen compounds only the strong nucleophiles imidazole (**k**), 3-formylindole (**l**) and 1,2,4-triazole (**n**) underwent reaction with

substrate 10, to give 10k, 10l and 10n in yields of 43, 47 and 65%, respectively, but required longer reaction times when compared with the equivalent reactions in the dehydroalanine series. The products were obtained as 1:1 diastereomeric mixtures, which could be separated by column chromatography. With weaker nucleophiles such as pyrazole and 7-azaindole no reaction was detected. In the addition of methyl mercaptoacetate (b) to the same substrate NMR spectroscopy indicated the formation of a small amount of 10b; however, isolation of the product was not possible. No reaction was detected with either benzylamine (d) or cyclohexane-1,3-dione (h). The reaction of methyl mercaptoacetate (b) and 1,2,4-triazole (n) with compound 11 gave compounds 11b and 11n as diastereomeric mixtures in yields of 68 and 50%, respectively, which could be separated by column chromatography. In the latter case, also Boc-Abu[\beta-(1,2,4-triazol-1-yl)]-OMe (30%) and a small amount of Boc- Δ Abu-OMe¹⁰ were obtained resulting from simultaneous and competitive cleavage of the Bz group. These slightly better overall yields for the addition product show that compounds having a Bz group are more reactive than those with only Boc groups. This may be due, on the one hand, to further conjugation through the phenyl ring of the former and, on the other hand, to a decreased reactivity of the latter due to the electron-donating mesomeric effect of the tert-butoxy group. No addition product was obtained in reactions with the even weaker nucleophiles benzylamine (d) and cyclohexane-1,3dione; with benzylamine the benzoyl group was quantitatively cleaved to give Boc-AAbu-OMe. Reaction of Tos-AAbu-(N-Boc)-OMe 12 with imidazole (k) and 3-formylindole (l) gave the β-substituted didehydroaminobutyric acid derivatives 12k and 12l in yields of 48 and 89%. Didehydrophenylalanine derivatives showed an even lower reactivity than that found with those of didehydroaminobutyric acid. Thus, no addition product could be obtained with any of the test nucleophiles in conjunction with either $Boc-\Delta Phe(N-Boc)$ -OMe or even $Bz-\Delta Phe(N-Boc)-OMe$; in an attempted reaction of the latter with methyl mercaptoacetate (b) no product was formed even 10 days after the reactants had been mixed. However, the reaction of $Tos-\Delta Phe(N-Boc)-OMe$ 13 with imidazole (k) and 3-formylindole (I) gave the expected products, 13k and 13l, as E/Z mixtures in yields of 69 and 85%, respectively.

Confirming and extending what had been previously demonstrated concerning the Michael addition to *N*-acyl-*N*-Bocdidehydroalanine methyl esters,⁸ the results presented above show that not only strong nucleophiles such as thiols and nitrogen heterocycles but also aliphatic amines and β -dicarbonyl compounds are suitable reagents leading to good yields in the addition products. The lability to nitrogen nucleophiles typical of all acyl groups but Boc^{8,11} was revealed in the case of the slow reactions involving the weaker nucleophiles. In this case, extensive cleavage was observed, which resulted in deactivation of the substrate and, thus, in very low yields or even in no formation of the required products. This low reactivity of aliphatic amines made it possible to add selectively the thiol function of 4-aminothiophenol (**f**) with a yield as good as 87%

 Table 2
 Results obtained in the addition of nucleophiles to $P-\Delta Abu(N-Boc)-OMe$ and $P-\Delta Phe(N-Boc)-OMe$ (P = Boc, Bz, Tos)

	Entry	Р	NuH	Product (compound no.)	Yield/% ^a
	1	Boc	k	Boc-Abu[<i>N</i> -Boc,β-(imidazol-1-yl)]-OMe 10k	43
	2	Boc	1	Boc-Abu[N-Boc,β-(3-formylindol-1-yl)]-OMe 10	47
	3	Boc	n	Boc-Abu[N-Boc, β -(1,2,4-triazol-1-yl)]-OMe 10n	65
	4	Bz	b	Bz-Abu(<i>N</i> -Boc,β-methoxycarbonylmethylsulfanyl)-OMe 11b	68
	5	Bz	n	Bz-Abu[N-Boc,β-(1,2,4-triazol-1-yl)]-OMe 11n	50
	6	Tos	k	Boc- Δ Abu[β -(imidazol-1-yl)]-OMe 12k	48
	7	Tos	1	Boc- Δ Abu[β -(3-formylindol-1-yl)]-OMe 12l	89
	8	Tos	k	Boc- Δ Phe[β -(imidazol-1-yl)]-OMe 13k	69
	9	Tos	1	Boc- Δ Phe[β -(3-formylindol-1-yl)]-OMe 13l	85
^{<i>a</i>} Pure non-re	ecrystallised	material.			

(for 1f). With the stronger nucleophiles all reactions were sufficiently fast to allow good yields in the expected product and this was also the case of the addition of thiols to a dipeptide derivative. In the N-acyl-N-Boc-didehydroaminobutyric acid methyl ester series only with the stronger nucleophiles was it possible to obtain an addition product, but the yields were moderate. The products were diastereomeric mixtures that could be resolved by column chromatography. In the N-acyl-N-Boc-didehydrophenylalanine methyl ester series no addition product could be obtained with any nucleophile tested. The low reactivity of the Δ Abu and Δ Phe substrates is interpreted in terms of deactivation caused by the electron-releasing contribution of the methyl and the conjugation effect related to phenyl, respectively, the latter being more effective in stabilising such substrates. Showing good reactivity, N-Tos-N-Boc-didehydroamino acid esters do not undergo nucleophilic cleavage under the reaction conditions, which leads to good yields in the addition reactions even in the case of the ΔAbu and ΔPhe substrates. With the stronger nucleophiles (nitrogen heterocycles and thiols) the addition products undergo detosylation to yield the corresponding β -substituted dehydroamino acid derivatives in very good yields, which confirms the results previously reported.9 With some nucleophiles detosylation was slower than addition and, thus, it was possible to isolate the addition product prior to elimination. This was most evident in the case of thiophenol (a), which allowed obtention of the addition and the elimination products (6a and 8a) both with a yield of 83%, only by controlling the reaction time. This tendency to detosylate may be due to steric pressure within the product side chain, associated with some electron-releasing effect exerted by the nucleophile moiety. Based on this hypothesis, in Scheme 4

we propose a possible mechanism for this elimination. Usually, with the didehydroalanine derivative **6** only the *E* isomer was produced, or this was obtained in large excess with regard to the *Z* isomer. However, with *N*-Tos-*N*-Boc-didehydroaminobutyric acid and *N*-Tos-*N*-Boc-didehydrophenylalanine derivatives

mixtures of the E and Z isomers were obtained, but these could be separated by column chromatography. Aliphatic amines and carbon nucleophiles reacted with N-Tos-N-Boc-didehydroalanine methyl ester but not with the corresponding ΔA bu and Δ Phe substrates. In the reaction of amines with the Δ Ala derivative only the addition product was isolated in good yields. The products of addition of β -dicarbonyl compounds behaved in two different ways according to the structure of the nucleophile. The derivatives of diethyl malonate (g) and cyclohexane-1,3-dione (h) behaved much in the same way as those of aliphatic amines, but evidence was collected to support the idea that the derivatives of methyl acetoacetate (i) and pentane-2,4dione (f) undergo cyclisation to give a furan derivative, which certainly releases some steric pressure within the side chain. The need for a methyl group bonded to a carbonyl group suggests that this process takes place through enolisation. However, as this rearrangement of structure seems to occur after detosylation, it is not clear to us why some of the compounds undergo detosylation and others do not; thus, we are now setting up to further investigate the behaviour of various tosyl substrates. We are also applying the results presented above to make side-chain-to-side-chain bonds within amino acids.

Experimental

General procedures

All melting points were measured on a Gallenkamp meltingpoint apparatus and are uncorrected. TLC analyses were carried out on 0.25 mm thick precoated silica gel plates (Merck Fertigplatten Kieselgel 60F254) and spots were visualised under UV light or by exposure to vaporised iodine. Preparative chromatography was carried out on Merck Kieselgel 60 (230-400 mesh). ¹H NMR spectra were recorded at 25 °C in ≈5% CDCl₃ solution on a Varian 300 spectrometer. All shifts are given in δ /ppm using $\delta_{\rm H}$ Me₄Si = 0 as reference. *J*-Values are given in Hz. Assignments were made by comparison of chemical shifts, peak multiplicities and J-values. ¹³C NMR spectra were recorded with the same instrument at 75.4 MHz and using the solvent peak as internal reference. Elemental analyses of crystalline derivatives were carried out on a Leco CHNS 932 instrument. Petroleum ether refers to the fraction with distillation range 40-60 °C.

General method A. Synthesis of didehydroamino acid derivatives

The general procedure described elsewhere¹⁰ was used.

General method B. Addition of nucleophiles to didehydroamino acid derivatives

As described elsewhere,⁷ to a solution of 1 mmol of the methyl ester of an *N*,*N*-diacyl or *N*-tosyl-*N*-acyl-didehydroamino acid in acetonitrile (10 cm³), K_2CO_3 (6 eq.) was added, followed by the nucleophile (1 eq.) with rapid stirring at room temperature.

The reaction was monitored by TLC and, when no starting material was detected, the solution was filtered and evaporated at reduced pressure to give the required product.

Synthesis of Boc- Δ Ala(*N*-Boc)-OMe 1, Z- Δ Ala(*N*-Boc)-OMe 2, Z(NO₂)- Δ Ala(*N*-Boc)-OMe 3, Bz- Δ Ala(*N*-Boc)-OMe 4, Bz(NO₂)- Δ Ala(*N*-Boc)-OMe 5, Tos- Δ Ala(*N*-Boc)-OMe 6, Tos-Gly(*N*-Boc)- Δ Ala(*N*-Boc)-OMe 7 and Boc- Δ Abu(*N*-Boc)-OMe 10 and Tos- Δ Abu(*N*-Boc)-OMe 12. The synthesis of these compounds has been described elsewhere.^{10,13}

Synthesis of didehydroamino acid derivatives by general method A

Synthesis of Bz-ΔAbu(N-Boc)-OMe 11. Bz-Thr-OMe gave a crystalline material (97%), mp 52–54 °C (from *n*-hexane) (Found: C, 64.1; H, 6.5; N, 4.5. Calc. for $C_{17}H_{21}NO_5$: C, 63.95; H, 6.6; N, 4.4%).

Synthesis of Tos- Δ Phe(*N*-Boc)-OMe 13. Tos-Phe(β -OH)-OMe gave a crystalline material (94%), mp 97.5–98 °C (from ethyl acetate–*n*-hexane) (Found: C, 61.3; H, 5.9; N, 3.1; S, 7.4. Calc. for C₂₂H₂₅NO₆S: C, 61.2; H, 5.8; N, 3.25; S, 7.4%).

Synthesis of Boc-ΔPhe(*N*-Boc)-OMe 14. Boc-Phe(β -OH)-OMe gave a solid product (98%), mp 55–56 °C (from *n*-hexane) (Found: C, 63.8; H, 7.2; N, 3.9. Calc. for C₂₀H₂₇NO₆: C, 63.65; H, 7.2; N, 3.7%).

Synthesis of Bz-ΔPhe(*N*-Boc)-OMe 15. Bz-Phe(β -OH)-OMe gave a solid product (98%), mp 99.5–101 °C (from diethyl ether– *n*-hexane) (Found: C, 69.3; H, 6.1; N, 3.8. Calc. for C₂₂H₂₃NO₅: C, 69.3; H, 6.1; N, 3.7%).

Addition of nucleophiles by general method B

Addition of sulfur nucleophiles to *N*-acyl-*N*-(*tert*-butoxycarbonyl)didehydroalanine methyl esters. *Synthesis of Z-Ala*-(*N-Boc*, β -phenylsulfanyl)-OMe 2a. Z- Δ Ala(*N*-Boc)-OMe and thiophenol gave an oil, which solidified on storage (94%) (Found: C, 62.1; H, 6.2; N, 3.2; S, 7.6. Calc. for C₂₃H₂₇NO₆S: C, 62.0; H, 6.1; N, 3.1; S, 7.2%).

Synthesis of Z-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe **2b**. Z- Δ Ala(N-Boc)-OMe and methyl mercaptoacetate gave an oil failing all attempts to crystallise (93%).

Synthesis of $Z(NO_2)$ -Ala(N-Boc, β -phenylsulfanyl)-OMe 3a. $Z(NO_2)$ - Δ Ala(N-Boc)-OMe and thiophenol gave a crystalline material (95%), mp 84–85 °C (from *n*-hexane) (Found: C, 56.6; H, 5.4; N, 5.8; S, 6.5. Calc. for C₂₃H₂₆N₂O₈S: C, 56.3; H, 5.3; N, 5.7; S, 6.5%).

Synthesis of $Z(NO_2)$ -Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe **3b**. Z(NO₂)- Δ Ala(N-Boc)-OMe and methyl mercaptoacetate gave an oil failing all attempts to crystallise (90%).

Synthesis of Bz-Ala(N-Boc, β -phenylsulfanyl)-OMe **4a**. Bz- Δ Ala(N-Boc)-OMe and thiophenol gave a crystalline material (96%), mp 73–74 °C (from diethyl ether–*n*-hexane) (Found: C, 63.9; H, 6.1; N, 3.5; S, 7.6. Calc. for C₂₂H₂₅NO₅S: C, 63.6; H, 6.1; N, 3.4; S, 7.7%).

Synthesis of Bz-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe **4b**. Bz- Δ Ala(N-Boc)-OMe and methyl mercaptoacetate gave a crystalline material (96%), mp 60–62 °C (from diethyl ether–*n*-hexane) (Found: C, 55.6; H, 6.15; N, 3.5; S, 7.6. Calc. for C₁₉H₂₅NO₇S: C, 55.5; H, 6.1; N, 3.4; S, 7.8%).

Synthesis of $Bz(NO_2)$ -Ala(N-Boc, β -phenylsulfanyl)-OMe **5a**. Bz(NO₂)- Δ Ala(N-Boc)-OMe and thiophenol gave a crystalline material (87%), mp 61–63 °C (from diethyl ether–*n*-hexane) (Found: C, 57.7; H, 5.3; N, 6.1; S, 6.9. Calc. for C₂₂H₂₄N₂O₇S: C, 57.4; H, 5.25; N, 6.1; S, 7.0%).

Synthesis of $Bz(NO_2)$ -Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe **5b**. Bz(NO₂)- Δ Ala(N-Boc)-OMe and methyl mercaptoacetate gave a crystalline material (98%), mp 70–71 °C (from diethyl ether–*n*-hexane) (Found: C, 50.35; H, 5.4; N, 6.1; S, 6.9. Calc. for $C_{19}H_{24}N_2O_9S$: C, 50.0; H, 5.3; N, 6.1; S, 7.0%).

Synthesis of Tos-Ala(N-Boc, β -phenylsulfanyl)-OMe 6a. Tos- Δ Ala(N-Boc)-OMe and thiophenol gave a crystalline material (83%), mp 67–69 °C (from diethyl ether–n-hexane) (Found: C, 57.0; H, 5.8; N, 3.1; S, 13.4. Calc. for C₂₂H₂₇NO₆S₂: C, 56.75; H, 5.8; N, 3.0; S, 13.8%).

Synthesis of Boc- $\Delta Ala(\beta$ -phenylsulfanyl)-OMe **8a**. In a 10day reaction, Tos- $\Delta Ala(N$ -Boc)-OMe and thiophenol gave a 4 : 1 *E/Z* mixture (83%). These were separated by chromatographing the product through silica gel using diethyl ether–*n*hexane 4 : 1 as eluent; *E*-isomer, mp 108–109 °C (from diethyl ether–*n*-hexane) (Found: C, 58.3; H, 6.25; N, 4.5; S, 10.25. Calc. for C₁₅H₁₉NO₄S: C, 58.2; H, 6.2; N, 4.5; N, 10.4%); *Z*-isomer, oil.

Synthesis of Boc- $\Delta Ala(\beta$ -methoxycarbonylsulfanyl)-OMe **8b**. By letting the reaction proceed for 72 hours, Tos- $\Delta Ala(N$ -Boc)-OMe and methyl mercaptoacetate gave the *E* isomer as a crystalline material (86%), mp 66–67 °C (from diethyl ether-*n*-hexane) (Found: C, 47.0; H, 6.3; N, 4.5; S, 10.3. Calc. for C₁₂H₁₉NO₆S: C, 47.2; H, 6.3; N, 4.6; S, 10.5%).

Synthesis of Boc- $\Delta Ala(\beta$ -octylsulfanyl)-OMe 8c. By letting the reaction proceed for 72 hours, Tos- $\Delta Ala(N$ -Boc)-OMe and octane-1-thiol gave the *E* isomer as a crystalline material (78%), mp 49.5–51 °C (from diethyl ether–*n*-hexane) (Found: C, 59.1; H, 8.9; N, 4.0; S, 9.5. Calc. for C₁₇H₃₁NO₄S: C, 59.1; H, 9.0; N, 4.05; S, 9.3%).

Addition of nitrogen heterocycles to N-tosyl-N-(*tert*-butoxycarbonyl)didehydroalanine methyl ester. Synthesis of Tos-Ala(N-Boc, β -imidazol-1-yl)-OMe⁹ 6k. Using chloroform as solvent, Tos- Δ Ala(N-Boc)-OMe and imidazole gave an oil failing all attempts to crystallise (72%).

Synthesis of Tos-Ala[N-Boc, β -(3-formylindol-1-yl)]-OMe 6l. Using chloroform as solvent, Tos- Δ Ala(N-Boc)-OMe and 3formylindole gave a product which was chromatographed through silica gel using diethyl ether–*n*-hexane 2 : 1 as eluent to yield a crystalline material (41%), mp 165–167 °C (from diethyl ether–*n*-hexane) (Found: C, 60.05; H, 5.8; N, 5.6; S, 6.3. Calc. for C₂₅H₂₈N₂O₇S: C, 60.0; H, 5.6; N, 5.6; S, 6.4%).

Synthesis of Tos-Ala(N-Boc, β -pyrazol-1-yl)-OMe⁹ **6m**. Using chloroform as solvent, Tos- Δ Ala(N-Boc)-OMe and pyrazole gave a crystalline material (96%), mp 113.5–115.5 °C (from diethyl ether–*n*-hexane) (Found: C, 54.0; H, 5.9; N, 9.55; S, 7.6. Calc. for C₁₉H₂₅N₃O₆S: C, 53.9; H, 5.95; N, 9.9; S, 7.6%).

Synthesis of Tos-Ala[N-Boc, β -(1,2,4-triazol-1-yl)]-OMe⁹ **6n**. Using chloroform as solvent, Tos- Δ Ala(N-Boc)-OMe and 1,2,4-triazole gave a crystalline material (95%), mp 114–115 °C (from ethyl acetate–diethyl ether) (Found: C, 50.8; H, 5.65; N, 13.2; S, 7.9. Calc. for C₁₈H₂₄N₄O₆S: C, 50.9; H, 5.7; N, 13.2; S, 7.55%).

Addition of amines to *N*-acyl-*N*-(*tert*-butoxycarbonyl)didehydroalanine methyl esters. Synthesis of Boc-Ala(*N*-Boc, β -benzylamino)-OMe 1d. Boc- Δ Ala(*N*-Boc)-OMe and benzylamine gave an oil failing all attempts to crystallise (79%).

Synthesis of Boc-Ala(N-Boc, β -cyclohexylamino)-OMe 1e. Boc- Δ Ala(N-Boc)-OMe and cyclohexylamine gave an oil that eventually crystallised (72%), mp 59.0–60.5 °C (Found: C, 59.9; H, 9.1; N, 6.85. Calc. for C₂₀H₃₆N₂O₆: C, 60.0; H, 9.1; N, 7.0%).

Synthesis of Boc-Ala[N-Boc, β -(4-aminophenylsulfanyl)]-OMe If. Boc- Δ Ala(N-Boc)-OMe and 4-aminothiophenol gave a crystalline material (87%), mp 63–64.5 °C (from diethyl ether– *n*-hexane) (Found: C, 56.3; H, 7.1; N, 6.6; S, 7.4. Calc. for C₂₀H₃₀N₂O₆S: C, 56.3; H, 7.1; N, 6.6; S, 7.5%).

Synthesis of Tos-Ala(N-Boc, β -benzylamino)-OMe 6d. Tos- Δ Ala(N-Boc)-OMe and benzylamine gave an oil failing all attempts to crystallise (81%).

Synthesis of Tos-Ala(N-Boc, β -cyclohexylamino)-OMe 6e. Tos- Δ Ala(N-Boc)-OMe and cyclohexylamine gave an oil failing all attempts to crystallise (83%).

Attempt to synthesise $Bz-Ala(N-Boc,\beta-benzylamino)$ -OMe 4d. Seven days after $Bz-\Delta Ala(N-Boc)$ -OMe and benzylamine had been mixed, ¹H NMR indicated that the reactants had been consumed. The crude material obtained was chromatographed through silica gel using diethyl ether-petroleum ether as eluent to give Boc- Δ Ala-OMe (44%) and a benzylamine salt.

Addition of carbon nucleophiles to *N*-acyl-*N*-(*tert*-butoxycarbonyl)didehydroalanine methyl esters. *Synthesis of Boc-Ala*[*N*-*Boc*, β -bis(ethoxycarbonyl)methyl]-OMe 1g. Boc- Δ Ala(*N*-Boc)-OMe and diethyl malonate gave an oil failing all attempts to crystallise (83%).

Synthesis of Boc-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe Ih. Boc- Δ Ala(N-Boc)-OMe and cyclohexane-1,3-dione gave a crystalline material (80%), mp 144–145 °C (from diethyl ether– n-hexane) (Found: C, 57.8; H, 7.5; N, 3.4. Calc. for C₂₀H₃₁NO₈: C, 58.1; H, 7.6; N, 3.4%).

Synthesis of Boc-Ala{N-Boc, β -[(acetylmethoxycarbonyl)methyl]}-OMe Ii. Boc- Δ Ala(N-Boc)-OMe and methyl acetoacetate gave a crystalline material (94%), mp 94–95.5 °C (from *n*-hexane) (Found: C, 54.8; H, 7.5; N, 3.45. Calc. for C₁₉H₃₁NO₉: C, 54.7; H, 7.5; N, 3.4%).

Synthesis of Boc-Ala(N-Boc, β -(diacetylmethyl)-OMe 1j. Boc- Δ Ala(N-Boc)-OMe and pentane-2,4-dione gave a crystalline material (83%), mp 107–108 °C (from diethyl ether–*n*hexane) (Found: C, 56.8; H, 7.7; N, 3.6. Calc. for C₁₉H₃₁NO₈: C, 56.85; H, 7.8; N, 3.5%).

Synthesis of Bz-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 4h. Seven days after Bz- Δ Ala(N-Boc)-OMe and cyclohexane-1,3-dione had been mixed, ¹H NMR indicated that the reactants had been consumed. The crude material was chromatographed through silica gel using diethyl ether–*n*-hexane as eluent to give 4h as a crystalline material (33%); mp 149–150 °C (from diethyl ether–*n*-hexane) (Found: C, 63.4; H, 6.6; N, 3.4. Calc. for C₂₂H₂₇NO₇: C, 63.3; H, 6.5; N, 3.4%).

Synthesis of Tos-Ala[N-Boc, β -bis(ethoxycarbonyl)methyl]-OMe 6g. Tos- Δ Ala(N-Boc)-OMe and diethyl malonate gave a crystalline material (72%), mp 102–103 °C (from diethyl ether– *n*-hexane) (Found: C, 53.7; H, 6.3; N, 2.85; S, 6.2. Calc. for C₂₃H₃₃NO₁₀S: C, 53.6; H, 6.45; N, 2.7; S, 6.2%).

Synthesis of Tos-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 6h. Tos- Δ Ala(N-Boc)-OMe and cyclohexane-1,3-dione gave a crystalline material (84%), mp 165–167 °C (from diethyl ether) (Found: C, 56.3; H, 6.3; N, 3.0; S, 6.6. Calc. for C₂₂H₂₉NO₈S: C, 56.5; H, 6.25; N, 3.0; S, 6.9%).

Synthesis of 2-(tert-butoxycarbonylamino)-2,4-bis(methoxycarbonyl)-5-methyl-2,3-dihydrofuran 9i. Tos- Δ Ala(N-Boc)-OMe and methyl acetoacetate gave a crystalline material (86%), mp 121.5–123 °C (from diethyl ether–*n*-hexane) (Found: C, 53.3; H, 6.6; N, 4.3. Calc. for C₁₄H₂₁NO₇: C, 53.3; H, 6.7; N, 4.4%).

Synthesis of 4-acetyl-2-(tert-butoxycarbonylamino)-2-methoxycarbonyl-5-methyl-2,3-dihydrofuran 9j. Tos- Δ Ala(*N*-Boc)-OMe and pentane-2,4-dione gave a crystalline material (88%), mp 113.5–114.5 °C (from diethyl ether–*n*-hexane) (Found: C, 56.1; H, 7.1; N, 4.8. Calc. for C₁₄H₂₁NO₆: C, 56.2; H, 7.1; N, 4.7%).

Addition of thiophenol, methyl mercaptoacetate, cyclohexane-1,3-dione and benzylamine to Tos-Gly(*N*-Boc)- Δ Ala(*N*-Boc)-OMe. Synthesis of Tos-Gly(*N*-Boc)-Ala(*N*-Boc, β -phenylsulfanyl)-OMe 7a. Tos-Gly(*N*-Boc)- Δ Ala(*N*-Boc)-OMe and thiophenol gave a crystalline material (87%), mp 53–55 °C (from diethyl ether–*n*-hexane) (Found: C, 56.1; H, 6.1; N, 4.6; S, 10.0. Calc. for C₂₉H₃₈N₂O₉S₂: C, 55.9; H, 6.15; N, 4.5; S, 10.3%). Synthesis of Tos-Gly(N-Boc)-Ala(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 7b. Tos-Gly(N-Boc)- Δ Ala(N-Boc)-OMe and methyl mercaptoacetate gave an oil failing all attempts to crystallise (90%).

Synthesis of Tos-Gly(N-Boc)-Ala(N-Boc, β -benzylamino)-OMe 7d. Tos-Gly(N-Boc)- Δ Ala(N-Boc)-OMe and benzylamine gave a crystalline material (53%), mp 58.5–61 °C (from diethyl ether–*n*-hexane) (Found: C, 58.3; H, 6.55; N, 6.7; S, 5.5. Calc. for C₃₀H₄₁N₃O₉S: C, 58.1; H, 6.7; N, 6.8; S, 5.2%).

Synthesis of Tos-Gly(N-Boc)-Ala[N-Boc, β -(2,6-dioxocyclohexyl)]-OMe 7h. Tos-Gly(N-Boc)- Δ Ala(N-Boc)-OMe and cyclohexane-1,3-dione gave a crystalline material (60%), mp 173–174 °C (from diethyl ether) (Found: C, 56.1; H, 6.6; N, 4.5; S, 5.0. Calc. for C₂₉H₄₀N₂O₁₁S: C, 55.8; H, 6.45; N, 4.5; S, 5.1%).

Addition to *N*-acyl,*N*-(*tert*-butoxycarbonyl)-didehydroaminobutyric acid and -didehydrophenylalanine methyl esters. *Synthesis of Boc-Abu[N-Boc,* β -(*imidazol-1-yl)]-OMe 10k*. Boc- Δ Abu(*N*-Boc)-OMe and imidazole gave a 1 : 1 mixture of diastereomers (43%). This was chromatographed through silica gel using ethyl acetate–diethyl ether 1 : 1 as eluent; mp 81.5– 83.5 °C and 82.5–84.5 °C (from ethyl acetate–*n*-hexane) (Found: C, 56.5; H, 7.75; N, 10.6. Calc. for C₁₈H₂₉N₃O₆: C, 56.4; H, 7.6; N, 10.95%).

Synthesis of Boc-Abu[N-Boc, β -(3-formylindol-yl)]-OMe 10I. Boc- Δ Abu(N-Boc)-OMe and 3-formylindole gave a 1 : 1 mixture of diastereomers (47%). This was chromatographed through silica gel using diethyl ether–*n*-hexane 2 : 1 as eluent; mp 109–111 °C and 145–147 °C (from diethyl ether–*n*-hexane) (Found: C, 62.9; H, 7.0; N, 6.15. Calc. for C₂₄H₃₂N₂O₇: C, 62.6; H, 7.0; N, 6.1%).

Synthesis of Boc-Abu[N-Boc, β -(1,2,4-triazol-1-yl)]-OMe 10n. Boc- Δ Abu(N-Boc)-OMe and 1,2,4-triazole gave a 1 : 1 mixture of diastereomers (65%). This was chromatographed through silica gel using diethyl ether as eluent; mp 84–85 °C and 108–110 °C (from diethyl ether–*n*-hexane) (Found: C, 53.1; H, 7.4; N, 14.5. Calc. for C₁₇H₂₈N₄O₆: C, 53.1; H, 7.3; N, 14.6%).

Synthesis of Bz-Abu(N-Boc, β -methoxycarbonylmethylsulfanyl)-OMe 11b. Bz- Δ Abu(N-Boc)-OMe and methyl mercaptoacetate gave a 1 : 1 mixture of diastereomers (68%). This was chromatographed through silica gel using diethyl etherpetroleum ether 1 : 2 as eluent; mp 60–61 °C (from *n*-hexane) and an oil (Found: C, 56.5; H, 6.55; N, 3.3; S, 7.4. Calc. for C₂₀H₂₇NO₇S: C, 56.5; H, 6.4; N, 3.3; S, 7.5%).

Synthesis of Bz-Abu[N-Boc, β -(1,2,4-triazol-1-yl)]-OMe 11n. Bz- Δ Abu(N-Boc)-OMe and 1,2,4-triazole were mixed and left for 72 hours to give a mixture containing both diastereomers of the expected product and also Boc-Abu[β -(1,2,4triazol-1-yl)]-OMe and some Boc- Δ Abu-OMe. The crude material obtained was chromatographed through silica gel using diethyl ether–*n*-hexane 2 : 1 as eluent to give 11n as a 1 : 1 mixture of diastereomers (50%), Boc-Abu[β -(1,2,4triazol-1-yl)]-OMe (30%) (Found: C, 51.05; H, 7.0; N, 19.5. Calc. for C₁₂H₂₀N₄O₄: C, 50.7; H, 7.1; N, 19.7%); and Boc- Δ Abu-OMe.¹⁰ The diastereomeric mixture of 11n was in turn separated by chromatography through silica gel using diethyl ether–*n*-hexane as eluent to give products with mp 108–109.5 °C and 79.5–81.5 °C (from ethyl acetate–*n*-hexane) (Found: C, 59.0; H, 6.1; N, 14.1. Calc. for C₁₉H₂₄N₄O₅: C, 58.75; H, 6.2; N, 14.4%).

Synthesis of Boc- $\Delta Abu[\beta-(imidazol-1-yl)]$ -OMe 12k. Tos- $\Delta Abu(N-Boc)$ -OMe and imidazole gave a 65 : 35 E/Z mixture (48%). These were chromatographed through silica gel using diethyl ether–*n*-hexane (1 : 1) and ethyl acetate–*n*-hexane (2 : 1) as eluents to give: E-isomer, mp 145–146 °C (from diethyl ether– *n*-hexane), and Z-isomer, mp 115.5–116.5 °C (from diethyl ether–*n*-hexane) (Found: C, 55.5; H, 6.7; N, 14.7. Calc. for C₁₃H₁₉N₃O₄: C, 55.5; H, 6.8; N, 14.9%). Synthesis of Boc- $\Delta Abu[\beta$ -(3-formylindol-1-yl)]-OMe 121. Tos- $\Delta Abu(N$ -Boc)-OMe and 3-formylindole gave a 65 : 35 mixture (89%). These were chromatographed through silica gel using diethyl ether–*n*-hexane as eluent to give: *E*-isomer, mp 145.5–147 °C (from ethyl acetate–*n*-hexane), and *Z*-isomer, mp 170–171 °C (from ethyl acetate–*n*-hexane) (Found: C, 63.5; H, 6.2; N, 7.7. Calc. for C₁₉H₂₂N₂O₅: C, 63.7; H, 6.2; N, 7.8%).

Attempt to synthesise Bz-Abu(N- Boc,β -benzylamino)-OMe. Bz- Δ Abu(N-Boc)-OMe and benzylamine gave Boc- Δ Abu-OMe¹⁰ (87%).

Synthesis of Boc- $\Delta Phe[\beta-(imidazol-1-yl)]$ -OMe 13k. Tos- $\Delta Phe(N-Boc)$ -OMe and imidazole gave an 1 : 1 E/Z mixture (69%). This was chromatographed through silica gel using ethyl acetate–diethyl ether as eluent; mp 164–165.5 °C and 142–144 °C (from ethyl acetate–diethyl ether) (Found: C, 63.2; H, 6.4; N, 11.7. Calc. for C₁₈H₂₁N₃O₄: C, 63.0; H, 6.2; N, 12.2%).

Synthesis of Boc- $\Delta Phe[\beta$ -(3-formylindol-1-yl)]-OMe 13I. Tos- $\Delta Phe(N-Boc)$ -OMe and 3-formylindole gave a 1 : 1 E/Z mixture (85%). This was chromatographed through silica gel using diethyl ether–*n*-hexane 2 : 1 as eluent; mp 168–170 °C and 193–195 °C (from diethyl ether–*n*-hexane) (Found: C, 68.25; H, 5.9; N, 6.5. Calc. for C₂₄H₂₄N₂O₅: C, 68.6; H, 5.75; N, 6.7%).

Attempt to synthesise Bz-Phe[β -(1,2,4-triazol-1-yl)]-OMe. Bz- Δ Phe(N-Boc)-OMe and 1,2,4-triazole were mixed and set aside for 72 hours; then, the solution was filtered and the solvent was evaporated at reduced pressure to give Boc- Δ Phe-OMe (84%), mp 80.5–81.5 °C (from diethyl ether–*n*-hexane) (Found: C, 65.0; H, 7.2; N, 5.1. Calc. for $C_{15}H_{19}NO_4$: C, 65.0; H, 6.9; N, 5.05%).

References

- 1 Y. N. Belokon, A. S. Sagyan, S. M. Djamgaryan, N. T. Bakhmutov and V. M. Belikov, *Tetrahedron*, 1988, 44, 5507.
- 2 C. Cativiela and M. D. Diaz-de-Villegar, Can. J. Chem., 1992, 70, 2325.
- 3 M. Pérez and R. Pleixats, Tetrahedron, 1995, 51, 8355.
- 4 J. M. Probert, D. Rennex and M. Bradley, *Tetrahedron Lett.*, 1996, 37, 1101.
- 5 M. Barbaste, V. Rolland-Fulcrand, P. Viallefont and J. Martinez, *Tetrahedron Lett.*, 1998, **39**, 6287.
- 6 V. Rolland-Fulcrand, N. Haroune, M. L. Roumestant and J. Martinez, *Tetrahedron: Asymmetry*, 2000, **11**, 4719.
- 7 P. M. T. Ferreira, H. L. S. Maia and L. S. Monteiro, *Tetrahedron Lett.*, 1999, **40**, 4099.
- 8 P. M. T. Ferreira, H. L. S. Maia, L. S. Monteiro, J. Sacramento and J. Sebastião, J. Chem. Soc., Perkin Trans. 1, 2000, 3317.
- 9 P. M. T. Ferreira, H. L. S. Maia, L. S. Monteiro and J. Sacramento, *Tetrahedron Lett.*, 2000, **41**, 7437.
- 10 P. M. T. Ferreira, H. L. S. Maia, L. S. Monteiro and J. Sacramento, J. Chem. Soc., Perkin Trans. 1, 1999, 3697.
- 11 L. Grehn, K. Gunnarsson and U. Ragnarsson, Acta Chem. Scand. Ser. B, 1987, 41, 18.
- 12 H. L. Maia, B. Ridge and H. N. Rydon, J. Chem. Soc., Perkin Trans. 1, 1973, 98.
- 13 P. M. T. Ferreira, H. L. S. Maia and L. S. Monteiro, *Tetrahedron Lett.*, 1998, **39**, 9575.